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Abstract. A theoretical study is made of the steady-state populations of a three-level atom in a ladder
configuration, driven by a superposition of a monochromatic laser wave with a broad-band squeezed vac-
uum. The master equation for the system and the atomic Bloch equations are derived. The steady-state
populations are calculated numerically and shown graphically as functions of two-photon detuning for var-
ious cases of the squeezed vacuum. It is shown that, the atomic populations depend strongly on the relative
phase of the driving field and the squeezed vacuum. When the phase matching condition is fulfilled, there
will be a strong two-photon resonant absorption from the squeezed vacuum, a characteristic different from
absorption of photons from a classical field.

PACS. 42.50.Dv Nonclassical field states; squeezed, antibunched, and sub-Poissonian states; operational
definitions of the phase of the field; phase measurements

1 Introduction

Since the first successful generation of squeezed light [1]
about a decade ago, the interaction of squeezed light with
atomic systems has attracted considerable interest. As
first predicted by Gardiner [2], the squeezed vacuum can
inhibit decay of one of the atomic polarization quadratures
of a two-level atom. This modification opens the possibil-
ity of obtaining subnatural line widths in resonance fluo-
rescence [3] and in the weak-field atomic absorption spec-
trum [4]. A variety of other effects emphasizing the novel
features of the interaction between two-level atoms and
the squeezed vacuum have also been predicted. Examples
include squeezing induced transparency [5], level shifts [6],
asymmetric and dispersive profiles in fluorescence spectra
[7] and amplification without population inversion [8]. The
effects of finite-bandwidth squeezed light on the fluores-
cence and absorption spectra are also studied [9]. To date,
these predictions have not been experimentally tested.

The effects of a broad-band squeezed vacuum on three-
level atoms have also been investigated [10–13]. In a three-
level atom in lambda, vee and ladder configurations inter-
acting with a squeezed vacuum field, there are spectacular
qualitative changes in the steady-state populations rela-
tive to the ordinary vacuum, including two-photon popu-
lation inversion [10–12]. Futher work has also been done
to study the effect of a broad-band squeezed vacuum on
the resonance fluorescence from three-level atoms [14–16].
In particular, Ferguson et al. [14] have investigated how
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a narrow-band squeezed vacuum field coupled to one of
the two atomic transitions affects the fluorescence emit-
ted from the other transition.

Recently, great attention has been paid to the effect
of a squeezed vacuum on the two-photon excitation rate
for a three-level atom in the ladder configuration [17],
where a linear dependence of the excitation rate on the
excitation intensity in the weak field limit is predicted,
instead of a quadratic one for classical excitation field
[18]. In particular, an experiment has already been per-
formed on the squeezing-modified two-photon absorption
in atomic cesium where fundamental alternation of atomic
radiative processes by the nonclassical field has been
demonstrated [19].

In this paper, we will examine the effect of superpo-
sition of coherent light with a broad-band squeezed vac-
uum on the steady-state populations of a three-level atom
in a ladder configuration. We assume that three atomic
levels are nearly equispaced and the atom is driven by a
single monochromatic coherent field coupled to the two
possible atomic transitions. We assume moreover that the
bandwidth of the squeezed vacuum is much larger than
both the natural linewidth of the transitions and the dif-
ference between the frequencies of the two atomic transi-
tions. Thus a single broad-band squeezed vacuum is cou-
pled to both transitions. It leads to interesting differences
between the previous study [16] and the present one. In
the previous study [16], the three-level atom is assumed
to be driven by two monochromatic fields and interacting
with two statistically independent broad-band squeezed
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Fig. 1. Three-level atom in a ladder configuration with nearly
equal transition frequencies driven by a single coherent laser
field of frequency ωL detuned from the atomic transition fre-
quencies by ∆1 = ωL − ω21 and ∆2 = ωL − ω32.

baths. As a result, the two-photon correlation terms are
excluded in the master equation and the optical Bloch
equations therein. Secondly, the steady-state populations
are treated as measures of photon absorption probabil-
ity and shown as functions of two-photon detuning in the
present paper, while the variation of the steady-state pop-
ulations versus the amplitude of the resonant driving fields
is interested therein [16]. Noting that the effect of includ-
ing a cavity into the configuration is merely to degrade
the strength of the two-photon correlation of the squeezed
vacuum without altering the essential features [10,20,21],
we will consider likewise a free-space squeezed vacuum for
simplicity.

The paper is organized as follows. In Section 2, the
model is described, and the master equation and the opti-
cal Bloch equations are derived. In Section 3, the steady-
state atomic populations are calculated numerically and
shown graphically as functions of two-photon detuning for
various cases of the squeezed vacuum. A brief summary is
included in Section 4.

2 Master equation and Bloch equations

Consider a three-level atom in a ladder configuration with
states |1〉, |2〉 and |3〉 having nearly equispaced energies
E1, E2 and E3 respectively (E3 > E2 > E1). The atom
is driven by one linearly polarized monochromatic coher-
ent field of frequency ωL coupled to both the 1-2 and 2-3
transitions and is furthermore coupled to all other modes
of the electromagnetic field which are assumed to be in a
broad-band squeezed vacuum state (Fig. 1). The atomic
transition frequencies between the ground state |1〉 and
the intermediate state |2〉, and between the intermediate
state |2〉 and the upper state |3〉 are respectively ω21 and
ω32, where ~ωij = Ei − Ej . These transitions are asso-
ciated with electric dipole matrix elements µ12 and µ23

(assumed real for simplicity) respectively, whereas the 1-3
transition is forbidden in the electric dipole approximation
(µ13 = 0). In the electric dipole and rotating-wave approx-
imations the Hamiltonian of the system has the following
form:

H = HS +HR +HRS (1)

where

HS = HSO +HI (2)

is the system (atom + driving field ) Hamiltonian, with

HSO|i〉 = Ei|i〉, i = 1, 2, 3, (3)

and HI is the atom–driving field interaction Hamiltonian
given as follows,

HI = − 1
2 i~Ω1{|2〉〈1| exp [−i (ωLt− ϕL)]

−|1〉〈2| exp [i (ωLt− ϕL)]}

− 1
2 i~Ω2{|3〉〈2| exp [−i (ωLt− ϕL)]

−|2〉〈3| exp [i (ωLt− ϕL)]}

(4)

where Ω1 = µ12E0/~ and Ω2 = µ23E0/~ are the Rabi
frequencies, with E0 the amplitude and ϕL the phase of
the coherent field.

HR is the Hamiltonian of the quantized electromag-
netic field of the squeezed vacuum:

HR = ~
∑
λ

ωλ

(
a+
λ aλ +

1

2

)
(5)

where aλ and a+
λ are the bosonic operators for the field.

HRS is the system-squeezed vacuum coupling Hamiltonian
in the rotating-wave approximation given as follows:

HRS = − i~2
∑
λ

(Ω
(1)
λ aλ|2〉〈1| − |1〉〈2|(Ω

(1)
λ )∗a+

λ )

− i~2
∑
λ

(Ω
(2)
λ aλ|3〉〈2| − |2〉〈3|(Ω

(2)
λ )∗a+

λ )
(6)

where

Ω
(1)
λ = (µ12

∧
eλ)

(
2ωλ
~ε0V

)1/2

(7)

and

Ω
(2)
λ = (µ23

∧
eλ)

(
2ωλ
~ε0V

)1/2

(8)

are the usual one-photon Rabi frequencies of the vacuum

field,
∧
eλ is the unit polarization vector, and λ ≡ (k, s) la-

bels both the propagation vector k and the polarization s.
A broad-band squeezed vacuum can be generally illus-

trated by parameters ωs, N (ωλ) and M(ωλ), where ωs is
the carrier frequency of the squeezed vacuum and N(ωλ)
and M(ωλ) are given in the following expressions:〈

aλa
+
µ

〉
= N(ωλ) + 1 for ωλ = ωµ,〈

a+
λ aµ

〉
= N(ωλ) for ωλ = ωµ,

〈aλaµ〉 = M(ωλ) for ωλ + ωµ = 2ωs,〈
a+
λ a

+
µ

〉
= M∗(ωλ) for ωλ + ωµ = 2ωs,

(9)

with |M(ωλ)|2 ≤ N(ωλ) [N(ωλ) + 1], where the equal-
ity holds for minimum-uncertainty states. The parameter
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N(ωλ) is the mean photon number of the mode λ in the
broad-band squeezed vacuum and the complex parameter
M(ωλ) = M(2ωs − ωλ) = |M(ωλ)| exp(iϕs) character-
izes the correlations between the field modes at frequency
ωλ and at frequency 2ωs − ωλ, where ϕs is the phase of
the squeezed vacuum. In this paper, we shall suppress the
functional dependence of N and M on ωλ for simplicity.

In the Schrödinger picture, the master equation for
the density operator ρ, based on the Born-Markoff ap-
proximations [23,24] together with the electric dipole and
rotating-wave approximations, is given by

∂

∂t
ρ = − i

~ [HS , ρ]

+ 1
2 (N + 1)

∑
i,j

Γij
([
S−i , ρS

+
j

]
+
[
S−i ρ, S

+
j

])
+ 1

2N
∑
i,j

Γij
([
S+
i , ρS

−
j

]
+
[
S+
i ρ, S

−
j

])
− 1

2M
∑
i,j

Γij
([
S+
i , ρS

+
j

]
+
[
S+
i ρ, S

+
j

])
exp(−2iωst)

− 1
2M

∗
∑
i,j

Γij
([
S−i , ρS

−
j

]
+
[
S−i ρ, S

−
j

])
exp(2iωst)

(10)

where S+
1 = |2〉〈1|, S+

2 = |3〉〈2|, S−1 = |1〉〈2|, and
S−2 = |2〉〈3|. The sum over i, j is with 1, 2 only. Here
we have already neglected the intensity dependent Lamb
shifts and the corresponding frequency shift in M [10,13].
The parameters Γ11 and Γ22 are the rates for spontaneous
emissions from state |2〉 to state |1〉 and from state |3〉
to state |2〉, respectively. Γ21 and Γ12 are the coherence
transfer rates which couple to the 1-2 and 2-3 atomic co-
herences:

Γ21 = Γ12 =
µ12µ23

6πε0~c3
(
ω3

21 + ω3
32

)
· (11)

When µ12 and µ23 are orthogonal, Γ12 is zero. Evaluation
of Γ12 produces the following selection rules in terms of
angular momentum quantum numbers: J2 − J1 = ± 1, 0 ,
J2 − J3 = ± 1, 0, and M2 −M1 = M2 −M3 = ± 1, 0. In

this paper, we set Γ21 to (Γ11Γ22)
1/2

.

From the atomic master equation (10), we can obtain
the Bloch equations for the atomic density matrix ele-
ments. We define ρij as 〈i|ρ|j〉, where i, j = 1, 2, 3. The
matrix elements of ρ according to equation (10) satisfy
linearly coupled equations of motion containing explicit
time-dependent factors of the complex exponential type.
These can be removed by using the following transforma-
tions:

σii = ρii , i = 1, 2, 3,

σ12 = ρ12 exp[−i(ωLt− ϕL)] = σ∗21,

σ23 = ρ23 exp[−i(ωLt− ϕL)] = σ∗32,

σ13 = ρ13 exp[−2i(ωLt− ϕL)] = σ∗31.

(12)

In terms of the σij , the Bloch equations can be written in
simple form using the following suitable scaled variables:

τ = (Γ11 + Γ22) t, γ1 = Γ11/ (Γ11 + Γ22) ,

γ2 = Γ22/ (Γ11 + Γ22) , γ21 = Γ21/ (Γ11 + Γ22) ,

ξ1 = Ω1/ (Γ11 + Γ22) , ξ2 = Ω2/ (Γ11 + Γ22) ,

∆ = (∆1 +∆2)/ (Γ11 + Γ22) , δ = (∆2−∆1)/ (Γ11+Γ22) .

(13)

Thus τ is the scaled time, γ1 and γ2 scaled relaxation rates,
γ21 scaled coherence transfer rate, ξ1 and ξ2 scaled Rabi
frequencies,∆ is the scaled two-photon detuning and δ the
difference between the scaled one-photon detunings. Fur-
thermore, we define ∆s = 2 (ωs − ωL) / (Γ11 + Γ22) which
is equal to twice the scaled difference between the carrier
frequency of the squeezed vacuum and the frequency of
the external laser field. An important quantity arising in
the following analysis is the phase Φ = 2ϕL −ϕs which is
equal to the difference between twice the laser phase and
the phase of the squeezed vacuum.
The Bloch equations are as follows:

∂
∂τ
σ11 = 1

2ξ1 (σ12 + σ21) + γ1 [(N + 1)σ22 −Nσ11]

+ 1
2γ21|M |(σ13 exp (−i∆sτ − iΦ)

+σ31 exp (i∆sτ + iΦ)),
∂
∂τ
σ22 = − 1

2ξ1 (σ12 + σ21) + 1
2ξ2 (σ23 + σ32)

+γ2 [(N + 1)σ33 −Nσ22]

−γ1 [(N + 1)σ22 −Nσ11]

−γ21|M |(σ13 exp (−i∆sτ − iΦ)

+σ31 exp (i∆sτ + iΦ)),
∂
∂τ σ33 = − 1

2ξ2 (σ23 + σ32)− γ2 [(N + 1)σ33 −Nσ22]

+ 1
2γ21|M |(σ13 exp (−i∆sτ − iΦ)

+σ31 exp (i∆sτ + iΦ)),
∂
∂τ σ13 = − 1

2 [2i∆+ γ2 (N + 1) + γ1N ]σ13

+ 1
2ξ1σ23 −

1
2ξ2σ12

− 1
2γ21|M | (2σ22 − σ11 − σ33) exp (i∆sτ + iΦ) ,

∂
∂τ
σ12 = − 1

2 [i(∆− δ) + γ1 (2N + 1) + γ2N ]σ12

+ 1
2ξ2σ13 + γ21(N + 1)σ23

+ 1
2ξ1 (σ22 − σ11)

−(γ1σ21 −
1
2γ21σ32)|M | exp (i∆sτ + iΦ) ,

∂
∂τ σ23 = − 1

2 [i(∆+ δ) + γ1 (N + 1) + γ2(2N + 1)]σ23

− 1
2ξ1σ13 + γ21Nσ12 + 1

2ξ2(σ33 − σ22)

−(γ2σ32 −
1
2γ21σ21)|M | exp (i∆sτ + iΦ) .

(14)

The equations for σ32, σ21 and σ31 can be obtained from
equations (14) by complex conjugation. In general the op-
tical Bloch equations have oscillating coefficients, here we
only consider the case that the frequency of the driving
laser is equal to the carrier frequency of the squeezed vac-
uum. When ∆s = 0, the coefficients of the equations (14)
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become time-independent and steady-state solutions can
be obtained. By setting the left-hand side of equations (14)
to zero and using σ11 +σ22 +σ33 = 1 and matrix inversion
techniques, we obtain numerical steady-state solutions of
equations (14).

3 Steady-state populations of the atomic
system

We now focus on the steady-state populations in the upper
state |3〉 and the intermediate state |2〉 for various cases of
the broad-band squeezed vacuum coupled to the atomic
system.

The stationary populations σ33 and σ22 of the atom
in ordinary vacuum are well studied in [22], a brief de-
scription is included below for convenience of presentation.
When the driving field is weak (e.g. ξ = 0.2), σ33 has a
peak at ∆ = 0 (zero two-photon detuning) because of si-
multaneous absorption of two photons from the driving
field and a weak resonance at ∆ = δ (zero lower transi-
tion detuning) because of a stepwise excitation to the up-
per state, and σ22 has a one-photon resonance at ∆ = δ.
When the driving field is intermediate (e.g. ξ = 2), σ33

has a strong two-photon resonance at ∆ = 0 and a weak
resonance at ∆ = δ which is obscured by power brodening,
and σ22 has in addition a resonance at∆ = 0, due to spon-
taneous emission from the upper level to the intermediate
level following the resonant two-photon absorption.

When N > 0 and |M | = 0 the reservoir resembles a
thermal bath, with the temperature T given by the Planck
formula N(ωλ) = [exp(~ωλ/(kT ))−1]−1. The populations
of the upper state and the intermediate state versus two-
photon detuning ∆ for different N are plotted in Figure 2.
It is seen that the results for N > 0 are dramatically
different from that for N = 0. The existence of photons
in the thermal reservoir brings about stimulated emission
and absorption processes in the entire range, in addition
to spontaneous emission processes. As a result, there is a
background in the atomic populations. The height of the
background is determined by the Boltzmann distribution:

σ33/σ22 =exp[−~ω32/(kT )], σ22/σ11 =exp[−~ω21/(kT )]

with σ33 + σ22 + σ11 = 1. In the range where ∆ is suf-
ficiently small, the effect of the driving field combines.
When N is not too large (e.g. N = 1), besides the similar
resonances already described, σ33 exhibits a hill and σ22

a dip at ∆ = −δ (zero upper transition detuning), indi-
cating one-photon transition from state |2〉 to state |3〉.
When N is sufficiently large (e.g. N = 10), the effect of
the driving field is overwhelmed, and a straight line is dis-
played as in Figure 2. A similar graph applies to the case
of a weak driving field such as ξ = 0.2, with the effect
of the driving field overwhelmed at a lower N , and is not
shown.

In a squeezed vacuum with nonzero N and |M |, the
atomic populations depend strongly on the relative phase
of the driving field and the squeezed vacuum, namely
Φ = 2ϕL − ϕs, as well as on other parameters of the
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Fig. 2. (a) The steady-state population σ33 of state |3〉 versus
two-photon detuning ∆. (b) The steady-state population σ22

of state |2〉 versus two-photon detuning ∆. Parameter values:
δ = 5, ξ1 = ξ2 = ξ = 2, γ1 = γ2 = γ21 = 0.5, |M | = 0, and
different N : 1 (solid line), and 10 (dotted line).
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Fig. 3. (a) The steady-state population σ33 of state |3〉 versus
two-photon detuning ∆. (b) The steady-state population σ22

of state |2〉 versus two-photon detuning ∆. Parameter values:

N = 1, |M | =
√
N(N + 1), δ = 5, ξ1 = ξ2 = ξ = 2, γ1 = γ2 =

γ21 = 0.5 and different Φ : 0 (solid line), π
2 (dashed line), π

(dotted line).

squeezed vacuum. We plot in Figures 3 and 4 the pop-
ulations σ33 and σ22 versus two-photon detuning ∆ for
various Φ with N = 1 and N = 10 respectively and
|M |2 = N(N+1), i.e. the squeezed vacuum in a minimum
uncertainty state. It is seen in Figure 3 that, in addition
to features already discussed, σ33 (σ22) has an upward
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Fig. 4. Same as in Figure 3, but for N = 10.
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Fig. 5. (a) The modulus of the steady-state two-photon co-
herence σ13 versus two-photon detuning ∆. (b) The argument
β of σ13 versus two-photon detuning ∆. Parameter values:
N = 10, |M |2 = N (N + 1), δ = 5, ξ1 = ξ2 = ξ = 2,
γ1 = γ2 = γ21 = 0.5, and different Φ: 0 (solid line), π

2 (dashed
line), π (dotted line).

(downward) spike at ∆ = 0 for Φ = 0, while no such spikes
are observed for Φ = π

2 or π. The spikes come form the

M dependent terms 1
2γ21|M |(σ13 exp(−iΦ) +σ31 exp(iΦ))

in equation (14). When Φ = 0, the two-photon coherence
ρ13 (ρ31) at ∆ = 0 oscillates in phase with the squeezed
vacuum (compare Fig. 5), so that a strong exchange of
photon pairs of frequency ωλ and ωµ, with ωµ+ωλ = 2ωs,
between the atom and the squeezed vacuum results. As
the exchange of photon pairs is accomplished in a single
step, the population σ22 is extremely low. When Φ 6= 0,
the rate of exchange of photon pairs is greatly diminished

and the population in the intermediate state σ22 is consid-
erable. For N = 10, the spikes appear sharper, as shown
in Figure 4. Figure 5 exhibits the modulus |σ13| and the
argument β of the two-photon coherence σ13.

4 Summary

In this paper, we have investigated the steady-state pop-
ulations of a three-level atom in a ladder configuration,
driven by a superposition of an external coherent field
with a single broad-band squeezed vacuum. With use of
the Born-Markoff approximation, we derive the master
equation for the system and obtained the atomic Bloch
equations. In general, the coefficients of the Bloch equa-
tions are time-dependent. We examine only the case when
the carrier frequency of the squeezed vacuum is equal to
the frequency of the driving field. For this case, the coef-
ficients of the Bloch equations become time-independent.
The steady-state populations can be calculated numeri-
cally and shown graphically as functions of two-photon
detuning for various cases of the squeezed vacuum.

For the special case of an ordinary vacuum, the pop-
ulations of the intermediate state shows a resonance at
zero lower transition detuning (one-photon absorption),
and that of the upper state shows resonances at zero
two-photon detuning (two-photon absorption) and at zero
lower transition detuning (stepwise excitation) for a weak
driving field. For a driving field of intermediate strength,
the populations of the intermediate state shows in addi-
tion a resonance at zero two-photon detuning, indicating
spontaneous emission from the upper level following the
resonant two-photon absorption.

For the case of a thermal-like reservoir, the populations
show a background determined by the Boltzmann distri-
bution. When the average number of photons per mode
in the reservoir is not too large, besides the resonances al-
ready discussed, the population of the intermediate state
exhibits a dip and that of the upper state a hill at zero
upper transition detuning, indicating a one-photon tran-
sition. If the average number of photons per mode in the
reservoir is sufficiently large, the effect of driving field will
be overwhelmed. Only the background population is dis-
played.

For the case of a squeezed vacuum in minimum un-
certainty state, in addition to the resonances already dis-
cussed, the population of the upper (intermediate) state
shows an upward (downward) spike at zero two-photon
detuning under the condition of phase matching, indicat-
ing absorption of quantum correlated photon pairs from
the squeezed vacuum. No such spikes are observed if the
phase matching condition is not fulfilled.
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